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1 Abstract

The propagation of electrical excitation in a ring of cells described by the
Noble, Beeler-Reuter (BR), Luo-Rudy I (LR I), and third-order simplified
(TOS) mathematical models is studied using computer simulation. For each
of the models it is shown that after transition from steady-state circulation
to quasi-periodicity achieved by shortening the ring length (RL), the ac-
tion potential duration (APD) restitution curve becomes a double-valued
function and is located below the original ( that of an isolated cell) APD
restitution curve. The distributions of APD and diastolic interval (DI) along
a ring for the entire range of RL corresponding to quasi-periodic oscillations
remain periodic with the period slightly different from two RLs. The ”S”
shape of the original APD restitution curve determines the appearance of
the second steady-state circulation region for short RLs. For all the models
and the wide variety of their original APD restitution curves, no transition
from quasi-periodicity to chaos was observed.

2 Introduction

The propagation of an excitation wave in a ring of cardiac excitable cells is
a subject of significant practical and theoretical importance (1, 2, 3]. The
circulation of excitation in atrial tissue is observed during atrium flutter and
in a ring-shaped preparation of atrial tissue [4]. A one-dimensional ring of
excitable cells can be considered as a limiting case of a circle with a hole
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when the radius of the hole is commensurate with the radius of the circle.

Our previous qualitative knowledge [5] about excitation wave propaga-
tion along a ring can be summarized as follows:

1. The stationary propagation of action potential (AP) (with constant
APD and DI) is possible when the maximum slope of the APD resti-
tution curve is less than unity, and the length of the ring is greater
than some critical value. When the RL reaches that critical value,
further propagation becomes impossible.

2. The transition from stationary propagation to stationary quasi-peri-
odic oscillations (of APD, DI and propagation velocity, ©) is possible
when the slope of the APD restitution curve is equal to or greater than

1 for some DIs. Further shortening of the RL leads to the breakup of
propagation.

A recent analytical study (6] proved that a necessary and sufficient con-
dition of wave propagation instability is the existence of the slope ¥ > 1 of
the APD restitution curve of a cell in a ring. In this analytical study, an
approximate expression was found for the physically possible period Ag of
spatial distribution of APD, DI and velocity, ©, of the unstable wave front
propagation in a ring of length L:

(1)

Here o = ©'(DI*)/©*(DI*), aL <« 1, and DI* is the diastolic interval at
which ¥ = 1. The quasiperiodic oscillations of APD and DI in ring nodes
appear, since Ay is slightly smaller than 2L for aL < 1.

These very important results are obtained by reducing the solution of
the original PDE to a neutral-delay differential equation linearized in close
vicinity of DI*. They are correct only under the assumption that APD
restitution and dispersion curves are single-valued functions of previous DI
and only when these functions are obtained in the course of unstable prop-
agation. The latter requires the computer solution of the original PDE.

It remains unclear whether the above-mentioned assumption is valid
for other existing cell models not considered in [6], how the parameters
of quasiperiodic oscillation will change with progressive shortening of the
RL, and how under these conditions the original APD restitution curve
will be deformed. Therefore, to find the answers to these questions wave
propagation is studied here in rings of cells each of which is described by
different mathematical cell models. The results are prefaced by a short
discussion of the APD restitution properties of a cell.

Ao=2L(1—E)

r3
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3 APD restitution of a cardiac cell

The restitution properties express an ability of a cardiac cell to recover
after excitation. The recovery processes are difficult to observe in physio-
logical experiments since they are determined by the temporal activity of
membrane channels. That explains why physiologists prefer to measure the
secondary effects of these processes on the duration of AP. The protocol
of these measurements specifies that tissue is preconditioned by applying
periodic stimulation with a period equal to the normal heart beat until
steady-state condition is attained. Then, after comparatively short DI, a
premature excitation is applied, and the resulting APD is measured. This
process is repeated from the beginning with increased DI.

It was considered for a long time that the dependence of APD on DI
(APD restitution curve) is single-valued. However, it was found [7] that
the APD restitution curve changes when the frequency of the precondition
stimulation is increased. Moreover, it was shown that different measure-
ment protocols (e.g., S1, S2, S3 protocol) lead to the appearance of families
of APD restitution curves. Thus, it is possible to hypothesize that the APD
restitution curve is not a function only of the previous DI, but of the history
of the preceding sequence of excitations. In order to justify this assump-
tion, one can use the cell mathematical models based on clamp-experiment
data, which reflect the dynamics of membrane channels during and after
excitation.

The mathematical models describing the balance of membrane currents
(ionic Tf,., [, capacitance Cp 9 and stimulus I,m) and the dependence of
the gate and intermediate variables y(y;,ya,.. ., Ym) on membrane potential
V and time ¢ can be presented in the general form:

dv 2
sz- = - ZL‘(V, y) = Litim (2)

(V) = ylV) -y ©

For our purposes we chose four mathematical models: Noble (8], Beeler-
Reuter (9], Luo-Rudy [10], and the third-order simplified model [11]. They
are distinguished by the number n and the character of the functions L(V,y),
and by the number m of gate variables y and expressions for time constant
Ty and Y. For example, the recovery processes in the Noble model are
determined only by one gate variable whereas in the LR I model they are
determined by three. The details can be found in the original publications
cited above. For computer simulation we used Ashour-Hanna numerical
algorithm [12] with a = 0.75 and time step 0.02ms. The APDs and DIs are
measured at the 90% level of V,,..

In order to verify whether the APD after the next excitation depends
only on the previous DI, a sequence of three excitation stimuli was applied
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Original AP AP after first AP after second
Model premature stimulus | premature stimulus
DI, | APD,, | DI, APD,, | DL, APD,,
ms ms ms ms ms ms
Noble | 380 38 151 38 151
BR oo 291 20 117 20 146
LRI 00 384 20 256 20 242
TOS oo 384 20 256 20 148

Table 1: Results of consequtive stimulation with the equal DIs.

to the different single cell models so that the last two premature stimuli
appear after equal DIs. The results, presented in Table 1, show that only
for the Noble model after equal DIs the APs appear with equal durations.
For the BR model, the APD after the second premature beat is longer than
after the first, whereas for the LR I and TOS models in the same situation,
the APD is shorter. In addition, the APD restitution curves are measured
for the last three models, using computer simulations performed according
to S1, S2, and S3 protocol. Under this pacing conditions, instead of one
APD restitution curve we have a family of curves. Remarks that APD is
not a function of only previous DI can be found in [7). The pacing order of
a cell placed in a ring will be different in comparison to these two protocols,
especially during propagation with quasiperiodic oscillation. Therefore, one
can expect the APD restitution curve of a cell in a ring to be significantly
different from that of an isolated cell.

4 Computer simulation of wave propagation in a ring

For computer simulation, the ring is formed from a line of equidistant cells
interconnected by diffusion. The corresponding mathematical model can
be obtained by adding to the equation of cell model (2) the neighboring
cell currents (a,%’-, where a; is a cell coupling conductance), and setting
the initial (V(0,z), y(0,z)) and boundary (%%|r = 0) conditions. After
stimulation of one of the line ends and formation of a full propagating
wave, both ends are connected numerically into a ring, so that the first and
the last nodes of the ring become neighbors. To study the effect of a RL
on excitation wave propagation, we started with the open ring at the initial
RL and then decreased the RL by sequential elimination of nodes. The
simulation is not interrupted, and the space step remains constant. The
latter is chosen equal to 0.02cm for all models except the BR model where
it was equal to 0.025¢cm.

The computer simulation study is focused on the comparison of the
wave propagation along rings described by different cell models, and the
comparison of the APD restitution curves for an isolated cell and for a
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Propagation conditijon
Cell [ Steady | Start of ~ Quasi-periodic End of
model | state quasi- (results for quasi- | Breakup
periodic several RLs) periodic /
| Period of quasi-periodicity in a ring cell (turns) / RL, (nodes) |
Noble | ~/115 1747113 | 70/110,40/103;19775 -/70-68 | =735
BR | -/537 | 43/530 42/515;20/490 -/478 -/478-47;{
TOS | -/502 | 787/500 | 610/420:116/350 ~/349 | /348
Period of APD distribution in space (nodes) / RL (nodes)
Noble | -/115 T"227/113 | 223/110;211,103; -[70-68 | /35
142/75
BR | -/537 | 1034/530 1000/515;952/490 -/478 | -/478-475
TOS | -/502 | 999/500 | 838/420;652/350 -/349 | -/348
Range of APD oscillations in & ring cell (ms) / RL (nodes)
Noble [ -/115 [ 67.5/113 88/110,97/103;47/75 | -/70-68 -/35
BR | -/537 | 190/530 213/515;231/490 -/478 | -/478-475
TOS | -/502 | 10/500 | 134/420;150/350 -/349 | -/348

Table 2: Summary of ring simulation results ("~” means no data).

cell in a ring (dynamic APD restitution). For the ring composed of LR
I model cells, the quasiperiodic oscillations with smal] amplitude (10ms)

the computer experiments were conducted for RLs corresponding to the
beginning, the middle, and the end of the interval of unstable propagation.
The results are summarized in Table 2.

The second region of steady-state propagation was found for the ring
consisting of the Noble model cells, This region is located between the RL
corresponding to the end of quasiperiodic oscillations and the breakup of
propagation. The explanation of thjs is related to the ”S” shape of the
original APD restitution curve in the Noble model. This curve has two
regions with a slope less than one. The same was observed in the TOS
model synthesized for short APD (13].

Fig. 1 demonstrates the features of wave Propagation along a ring of
Noble model cells when the RL
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Figure 1: AP propagation in the 103 node ring simulated using the Noble
model.

(a) APD in a point of a ring as a function of the number of turns; (b)
APD restitution curves: original (solid line), in a cell of a ring (dotted line);
(c) APD distribution along the ring for approximately 8 turns of the wave
(z-axis shows the number of nodes traversed during circulation).
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Figure 2: AP propagation in the 350 node ring simulated using TOS model.
(a) APD in a point of a ring as a function of the number of turns; (b) APD
restitution curves: original (solid line), in a cell of a ring (dotted line); (c)
APD (1) and © (2) distributions along the ring for approximately 8 turns of

the wave (z-axis shows the number of nodes traversed during circulation).
(d) - dispersion curve.
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Figure 3: The normalized characteristics of wave propagation in a ring.
1 - Noble model; 2 - third-order model; 3 - Beeler-Reuter model.

5 Conclusion

1. The data presented confirm that the theoretical condition for transi-
tioning from the steady-state to quasiperiodic oscillations holds for all cell
models under consideration. The APD restitution curves measured for the
critical RL lie below their original versions and manifest a splitting which
is small enough to be neglected.

2. The APD restitution curves obtained for the range of RL corre-
sponding to quasiperiodic oscillations have progressively increasing (as RL
is shortened) downward shift and splitting. The splitting gets so large that
the dynamic APD restitution can no longer be considered a single-valued
function.

3. With progressive shortening of RL in the region of quasiperiodic os-
cillations, we observed: increase in oscillation amplitude; decrease in period
of APD distribution, A, and period, T, of quasiperiodic oscillations; more
pronounced increase in the fluctuation of the cell excitation cycle in a ring;
transition to breakup, or for models with S-shaped APD restitution to the
second steady-state region.

An open question of great interest is the relation between the restitution
curve obtained for a cell placed in a ring and that for an isolated cell. Our
experience shows that in models with the original APD restitution slope
less than unity, quasi-periodicity is not observed; whereas a slope greater
than unity in the APD restitution curve of an isolated cell always implies
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Wave propagation in a ring of TOS model cells is illustrated in Fig. 2
for RL of 350 nodes, which is close to the end of the quasiperiodic region.
This model is synthesized for APD,.,. = 196ms with the APD restitution
curve taken from [14]. The slope of this restitution curve is greater than
unity for Dls less than 40ms.

The experiments were conducted for three RLs: 500, 420, 350 nodes
corresponding to the beginning, middle, and near the end of the quasiperi-
odic region. For RLs greater than 500 nodes, a steady-state condition was
obtained. For RL = 500 nodes (see Table 2) the range of APD oscillations
is small with a very large period of modulation. The APD is distributed
periodically in space with the period of distribution slightly less then two
RLs. After shortening RL to 420 nodes, the range of APD oscillations
was 134ms, and the period of slow modulation was about 610 turns. The
range of the cycle-length variation was about 25ms. The period of spatial
distribution of APD was 838 nodes, which was smaller than two RLs by
two nodes. The APD restitution curve obtained for this RL is no longer a
single-valued function of DI. The difference between the upper and lower
branches of this curve is between 5% and 10%, depending upon the value
of DI. The multivaluedness of this curve is due to the fact that the APD
restitution curve in a cell depends on the history of previous excitations.

In the case of a 350 node ring, the range of APD oscillations rose further
(see Fig. 2a). The amplitude of oscillations is so large that the APD reaches
its maximum value inside the slow modulation period. The range of cycle-
length variation is about 35ms. The difference between the upper and lower
branches of the APD restitution curve (Fig. 2b) is between 3% and 25%,
depending on the value of DI. The period of spatial distribution of APD
(Fig. 2c) is about 652 nodes, which is smaller than two RLs by 48 nodes.
The dependence of wave propagation velocity on DI (dispersion curve) is
presented in Fig. 2d.

Due to the big variation in the cell model parameters, the comparison
of wave propagation characterigtics (see Table 2) is done after preliminary
normalization. Ring length, L, and the period of APD distribution in space,
A, are normalized to their respective critical values (L., and A ), which are
defined as those occurring at the transition from steady state to quasiperi-
odic state. The APD range, AAPD, is normalized to APD,, generated
in a ring where the wave propagates without traces of recovery processes.
Fig. 3a shows that in the region of RLs corresponding to the quasiperiodic
oscillations, the ratio AAPD/APD, is monotonically increasing with the
decrease of RL. The normalized A was decreasing linearly with shortening of
the RL. In the latter case the curves for the BR and TOS models coincide.

PR RN S
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the greater than unity slope of the corresponding APD restitution in a ring
and the ensuing quasi-periodicity.
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